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Abstract— In this paper, we address the problem of classifying
image sets for face recognition, where each set contains images
belonging to the same subject and typically covering large
variations. By modeling each image set as a manifold, we
formulate the problem as the computation of the distance between
two manifolds, called manifold–manifold distance (MMD). Since
an image set can come in three pattern levels, point, subspace,
and manifold, we systematically study the distance among the
three levels and formulate them in a general multilevel MMD
framework. Specifically, we express a manifold by a collection
of local linear models, each depicted by a subspace. MMD
is then converted to integrate the distances between pairs of
subspaces from one of the involved manifolds. We theoretically
and experimentally study several configurations of the ingredients
of MMD. The proposed method is applied to the task of face
recognition with image sets, where identification is achieved by
seeking the minimum MMD from the probe to the gallery of
image sets. Our experiments demonstrate that, as a general
set similarity measure, MMD consistently outperforms other
competing nondiscriminative methods and is also promisingly
comparable to the state-of-the-art discriminative methods.

Index Terms— Face recognition with image sets, hierarchical
divisive clustering, manifold–manifold distance (MMD), principal
angles, set similarity measure.

I. INTRODUCTION

IN TRADITIONAL face recognition task, subjects of inter-
est are trained and recognized from only a few samples.

Recently, with the increase of available video cameras and
large capacity storage media, many new applications such as
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Fig. 1. FRIS, where each subject is enrolled with a gallery image set, and
the unknown subject is represented as a probe image set.

visual surveillance and video retrieval, in which the image
quantity of each subject of interest for both training and testing
can be very large, are emerging. For example, as shown in
Fig. 1, a great number of images for each known subject
have been able to be collected from video sequences or photo
album, and recognition can also be conducted with a set of
probe images rather than a single probe image. In other words,
recognition can be formulated as matching a probe image
set against all the gallery image sets each representing one
subject. We call this category of face recognition task as Face
Recognition with Image Sets (FRIS) problem. In the FRIS
task, the images in each set are generally of large amount
and cover large variations of the subject, due to subject’s
pose changes, non-rigid deformations or different lighting
conditions. By efficiently exploiting set information, more
robust face recognition can be expected under more realistic
conditions [1]–[3].

Over the past decade, FRIS problem attracted increasing
interest in computer vision community [4]–[13]. It is worth
pointing out that video-based face recognition [7]–[9], [13]
is only a special case of FRIS. In the general scenario of
FRIS, the images in the gallery or probe sets are collected
not necessarily from consecutive video sequences but possibly
from multiple unordered observations of a subject.

A. Previous Work

From the view of image set modeling, related approaches
to set matching based face recognition broadly fall into
two classes: model-dependent parametric methods and model-
independent nonparametric methods. Typical parametric meth-
ods include probabilistic modeling method [11] and manifold
density divergence [1]. They tend to represent each image set
by a parametric distribution function and then measure the

1057–7149/$31.00 © 2012 IEEE



WANG et al.: MANIFOLD–MANIFOLD DISTANCE AND ITS APPLICATION TO FACE RECOGNITION WITH IMAGE SETS 4467

similarity between two distributions in terms of the Kullback-
Leibler Divergence (KLD). In [11], face pattern variations are
modeled by relatively simplistic single Gaussian distribution
in the face space. For more realistic and satisfactory modeling,
Gaussian mixture models (GMM) is used in [1] instead.
While parametric methods have shown promising results in
lots of applications, they typically need to solve the difficult
parameter estimation problem and may have large performance
fluctuation in case that the training and the novel test data sets
have weak statistical correlations [2], [3].

In comparison, nonparametric methods typically relax the
assumption on distribution of the set data, and try to model the
image set in more flexible manners. In the earlier work [10],
elements in the set, i.e., image samples are treated separately
and set matching is conducted by finding the closest pair of
samples from the image sets. However, such single sample
matching-based methods pay less attention to the global nat-
ural data variations across the whole set, making them more
sensitive to the effect of outliers. Also, their computational cost
is considerably high since they need to compute all pairwise
sample distances whenever to compare two image sets.

More recently, a favorable trend is using subspace learning
techniques to model the set data variability globally, following
the pioneer work [14]. These methods attempt to represent the
image set either by linear subspace [3], [5], [12], [15], [16]
or by nonlinear manifold [2], [4], [17] and then conduct set
classification by comparing subspaces or manifolds based on
different similarity measures.

Generally, nonparametric methods can be categorized
roughly into two groups: one group focuses on how to define
the set similarity measure as in [2], [14], [16], [17], while
the other group pays more attention to learning discriminative
classifier for a given similarity function as in [3], [4], [5],
[12], [15]. Among the former group, in [17], representative
samples called “exemplars” are extracted from image sets as
local models. Set matching is then conducted by measuring
the similarity of these exemplars. In [2], [14], principal angles
[18], [19] are exploited as the similarity measure of two linear
subspaces. To capture the data nonlinearity, [16] proposes a
kernel version of principal angles. In the latter group, with
subspace modeling of the image sets, [3] and [5] similarly
learn a linear discriminant subspace that aims to maximize
the class separation in terms of principal angles. To further
address complex data distribution, [4] seeks to extract local
discriminating information from nonlinear manifolds with
local linear model representations. Beyond but closely related
to principal angles, the so-called Grassmannian distances [20]
are studied in [15] as subspace distances and further utilized
for discriminant learning. For similar purpose of handling
data nonlinearity, [12] explores a kernel extension of [15] by
computing the Grassmannian distances in high dimensional
feature space via kernel trick.

In summary, the two classes of approaches, model-
dependent parametric and model-independent nonparametric
methods, have their own advantages and are applicable to
different cases. While the former try to estimate the underlying
density distributions confined to low-dimensional subspaces of
the data, the latter typically aim to learn the subspaces directly.

If the training and testing data share similar statistical prop-
erties, the parametric methods are expected to produce better
results [1]. For more general set classification tasks, patterns in
the training and testing stages might vary significantly due to
different collection conditions. In this case, the nonparametric
subspace learning methods are more suitable since they impose
uniform prior over the space of possible data variations [2], [3].
In practical applications, the choice between the two classes
of approaches should be determined by a particular task.

On the nonparametric side, it has been shown that the set of
face images acquired under (only) varying illumination con-
ditions forms an intrinsically low-dimensional linear subspace
[21]. Moreover, as analyzed in [2], [4], [17], while other data
variations (e.g., pose and expression) are involved, face images
in the set will exhibit significant nonlinearities. Therefore, it
is important to use image set representation flexible enough to
deal with the nonlinearity. Assuming the images in each set
reside on a nonlinear manifold, the FRIS task can be converted
to the problem of matching different manifolds based on some
similarity measurements. To our knowledge, the topic of a
general similarity or distance measure over manifolds has not
been given sufficient attention in the literature before. It is this
point that motivates the work in this paper.

B. Our Approach

In this paper, we propose a distance criterion called Man-
ifold to Manifold Distance (MMD) for face recognition with
image sets. Based on the local linearity property of manifold,
we represent a manifold as a collection of local linear models,
each depicted by a subspace. MMD is then converted to
integrating the local distances between each pair of subspaces,
which respectively comes from one of the two involved man-
ifolds. Preliminary results of the method have been published
in [22]. Compared with the conference version, this paper has
made three major extensions. First, the method to construct
local linear models from manifold is improved in a more
effective and flexible way. Second, we provide a more detailed
comparison and discussion regarding different possibilities for
the definition of MMD. Third, more extensive experiments
are carried out to evaluate the method and compare with other
state-of-the-art algorithms.

The rest of the paper is organized as follows: we give an
overview of the distances among point, subspace and manifold
in Section II. In Section III, we highlight the three key
ingredients of MMD and propose several possible definitions
of MMD. In Section IV, we make comparisons between the
proposed MMD and other related works, and give its com-
plexity analysis. Comprehensive experiments are presented in
Section V. Finally, we draw conclusions in Section VI.

II. FORMULATION OF DISTANCE CATEGORIES

In practical FRIS tasks, the size of an image set can vary
from a large number to a single one. To accommodate such
different cases, the image set can thus be represented in
three possible pattern levels: point (i.e., individual sample),
subspace (i.e., linear model spanned by a few samples), and
manifold (i.e., nonlinear low-dimensional embedding spanned
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Fig. 2. Hierarchical structure formed by three pattern levels (i.e., point,
subspace, and manifold) in face recognition.

by a large number of samples). See Fig. 2 for an illustration.
In some sense, the core of pattern classification is the distance
computation among these representations. The distances over
point and subspace have been well studied in the literature;
whereas very few studies have been done on the distance
related to manifold.

A. Distances Over Point and Subspace

Hereinafter we always denote points by xi , yi , subspaces
by Si , and manifolds by Mi . The distances over point and
subspace include the following three ones:

1) Point to Point Distance (PPD): denote by d(x1, x2) the
distance from point x1 to x2. The most commonly used PPD
is the Euclidean distance as follows:

d(x1, x2) = ‖x1 − x2‖. (1)

2) Point to Subspace Distance (PSD): denote by d(x, S) the
distance from point x to subspace S. It is generally defined as
the so-called L2-Hausdorff distance:

d(x, S) = min
y∈S
‖x− y‖ = ∥

∥x− x′
∥
∥. (2)

In fact, x′ is the projection of x in the subspace S, also the
nearest point to x in S. Thus, the PSD is actually the PPD
from x to its projection x′ in S. It is also known as “distance-
from-feature-space” (DFFS) in [23].

3) Subspace to Subspace Distance (SSD): denote by
d(S1, S2) the distance between two subspaces S1 and S2.
While there is not a unified definition yet to measure the SSD,
the concept of principal angles [18], [19] is perhaps the most
commonly exploited one due to its favorable performance.
Recently, another SSD is proposed in [24], which can be
regarded as utilizing the sum of DFFS between the bases of
two subspaces.

As known in linear algebra, the single point xi spans a
special linear subspace, i.e., the trivial zero subspace L{0},
which is centered on xi and of zero dimensional. In this sense,
both PPD and PSD are special cases of SSD.

B. Distances Over Manifold

Our main motivation arises from the fact that local lin-
earity holds everywhere on a globally nonlinear manifold.
Thus, a manifold can be modeled by a collection of local

linear models, each depicted by a subspace [25]. In general,
manifold can be viewed as extending subspace to account
for more general and complex data variations. The distances
associated with manifold are then related to those defined on
subspace. Formally, we denote the i -th component subspace
of a manifold M by Ci , and express M as a set containing all
the Ci :

M = {Ci : i = 1, 2, . . . , m} = {C1, C2, . . . , Cm}. (3)

where m is the number of local linear subspaces.
1) Point to Manifold Distance (PMD): denote by d(x,M)

the distance from point x to manifold M. Similar to PSD, one
can define this distance by finding the closest point to x in M
as follows:

d(x,M)= min
Ci∈M

d(x, Ci )= min
Ci∈M

min
y∈Ci
‖x−y‖=∥

∥x−x′′
∥
∥. (4)

In analogy to x′ in the PSD, here we call x′′ the projection of
x in the manifold M.

2) Subspace to Manifold Distance (SMD): denote by
d(S,M) the distance from subspace S to manifold M. It can
be defined by seeking the closest subspace to S in manifold
M:

d(S,M) = min
Ci∈M

d(S, Ci ). (5)

It comes that SMD is reduced to SSD in a simple manner
similar to that from PSD to PPD.

3) Manifold to Manifold Distance (MMD): denote by
d(M1,M2) the distance between two manifolds M1 and
M2. With the local linear model representation in (3), MMD
can be converted to integrating the distances between pair of
subspaces respectively from one of the involved manifolds.
See Fig. 3 for a conceptual illustration.

Formally, given two manifolds M1 = {Ci : i =
1, 2, . . . , m}, M2 = {C ′j : j = 1, 2, . . . , n}, we formulate
MMD as follows:

d(M1,M2) =
∑m

i=1

∑n

j=1
fi j d

(

Ci , C ′j
)

,

s.t.
∑m

i=1

∑n

j=1
fi j = 1, fi j ≥ 0. (6)

In this general formulation, MMD comes in the form of a
weighted average of pairwise SSDs, i.e., d(Ci , C ′j ).

It has been figured out that point is a special case of
subspace. Similarly, subspace can be viewed as a special case
of manifold under the formulation in (3). Therefore, the three
pattern levels form a hierarchical structure and all the six
distances can be formulated in a general multi-level MMD
framework.

III. MANIFOLD–MANIFOLD DISTANCE

From Fig. 3 and (6), one can find that there are three key
ingredients in MMD: (i) local linear model construction, i.e.,
the component subspaces Ci , C ′j , (ii) local model distance
measure, i.e., the SSD d(Ci , C ′j ), and (iii) global integration
of local distances, i.e., the choice of the weights fi j . In this
section, we present details of these ingredients and extensive
investigations on their various configurations.
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Fig. 3. Conceptual illustration of MMD. The distance between two
manifolds, M1 and M2, is converted to integrate the distances between their
corresponding local linear models, Ci and C ′j .

A. Local Linear Model Construction

To extract local models from manifold, previous works
generally use classical clustering methods, e.g., K-means [2],
[8], [17] or hierarchical agglomerative clustering (HAC) [4].
They have two main limitations: first, the number of target
clusters (i.e. local models) needs to be specified a priori;
second, the linearity property of the extracted local models
is not guaranteed explicitly. To overcome these limitations,
we propose an effective and efficient clustering algorithm for
adaptively constructing multi-level local models with explicit
linearity guarantee.

We first introduce the concept of Maximal Linear Patch
(MLP). In brief, an MLP on the manifold is defined as a local
linear patch, whose nonlinearity degree is elegantly measured
by the deviation between Euclidean distance and geodesic
distance. To construct MLPs, our conference paper [22] has
derived a one-shot sequential clustering method that can only
yield MLPs for a pre-specified nonlinearity degree and might
suffer from the problem of unbalanced clusters. In this paper,
we further combine the merits of MLP and hierarchical clus-
tering method. Since in most cases the appropriate number of
clusters is much smaller than the number of data samples, here
we explore the more efficient top-down hierarchical divisive
clustering (HDC) rather than the bottom-up HAC manner
used in previous work [4]. As the quality of the cluster (i.e.,
MLP) is measured in terms of nonlinearity degree, we call
the clustering method Linearity-constrained HDC (L-HDC).
Our recent works [26], [27] have conducted some preliminary
study on the method. This paper will give more extensive
investigation and experimental validation.

Formally, given a manifold M with its data set X =
{x1, x2, . . . , xN }, where xi ∈ RD is a D-dimensional column
vector, and N is the sample number. We aim to extract a
collection of MLPs X(i) from X, i.e.,

X =
m
⋃

i=1

X(i);

X(i)|mi=1 =
{

x(i)
1 , x(i)

2 , . . . , x(i)
Ni

}

,

(
m

∑

i=1

Ni = N

)

. (7)

Each MLP X(i) is then modeled as a linear subspace Ci to
obtain the local linear model representation in (3).

Firstly, the pairwise Euclidean distance matrix DE and geo-
desic distance matrix DG , based on k-NN graph, are computed

Algorithm 1 Linearity-Constrained HDC (L-HDC)

1 Initialization: X(1) = {x1, x2, . . . , xN }, m = 1.
Compute the nonlinearity score β(1) according to (8).

2 Choose X(i) (i ∈ {1, 2, . . . , m}) with the largest score
β(i) as the parent cluster. Split X(i) as follows:

2.1 According to geodesic distance DG , select two furthest
seed points, xl and xr from X(i).

2.2 Initialize two child clusters: X(i)
l = {xl}, X(i)

r = {xr }.
Update: X(i) ← X(i)\{xl, xr }.

2.3 while (X(i) �= Ø) do
2.3.1 For current X(i)

l , construct its neighbor points set,
denote by Pl . According to H, Pl gathers the k-NN
samples of all the points in X(i)

l .
2.3.2 For current X(i)

r , construct its neighbor points set Pr

in the similar way to step 2.3.1.
2.3.3 Sequentially update:

X(i)
l ←X(i)

l ∪ (Pl ∩ X(i)), X(i)←X(i)\(Pl ∩ X(i));
X(i)

r ←X(i)
r ∪ (Pr ∩ X(i)), X(i)←X(i)\(Pr ∩ X(i)).

2.4 X(i) is split into two smaller ones: X(i)
l and X(i)

r .
Update: m ← m + 1, compute β

(i)
l and β

(i)
r .

3 The splitting procedure continues until the nonlinearity
score β(i) in step 2 is less than a threshold δ.

as in [28]. Then a matrix holding distance ratios is obtained
as: R(xi , x j ) = DG(xi , x j )/DE (xi , x j ). Clearly, these three
matrices are all of size N × N . Since geodesic distance is
always not smaller than Euclidean distance, R(xi , x j ) ≥ 1
holds for any entry of R. Besides, another matrix H of size
k×N is also constructed, each column H(:, j)( j = 1, . . . , N)
holding the indices of k nearest neighbors of the data point x j .
Note that, as a byproduct of the computation of DE and DG ,
the construction of H requires no extra computation. To mea-
sure the nonlinearity degree of an MLP, X(i) (i = 1, 2, . . . , m),
we define the following nonlinearity score function:

β(i) = 1

N2
i

Ni∑

p=1

Ni∑

q=1

R
(

x(i)
p , x(i)

q

)

. (8)

The L-HDC is formulated as Algorithm 1. Its basic proce-
dure is that, in the first level, all samples are initiated as a
singleton MLP (cluster). Then, in each new level, the MLP
in the parent level with the largest nonlinearity degree will be
split into two smaller ones with decreased degrees. Finally, we
are able to obtain multi-level MLPs with different nonlinearity
degrees. Note that the threshold δ in step 3 controls the
termination of the algorithm and thus the number of final
clusters, i.e., m, as well as their nonlinearity degrees. A larger
δ implies fewer clusters but larger linearity deviation, and vice
versa. Obviously, the complete clustering hierarchy can be
produced whenever δ is specified to any value less than 1, since
all β(i)’s are larger than 1. It can be observed that most steps
of Algo.1 are access operations against existing matrices com-
puted in advance. Although it involves some iterative steps,
the algorithm runs very efficiently nevertheless. We will give
detailed complexity analysis of the algorithm in Section IV-B.
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Fig. 4. Local models of the face data. Each row shows a local model with the
sample mean (first column), that is, exemplar, and six representative samples.
The first and second rows belong to one individual, and the third and fourth
rows belong to another individual.
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2v
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Fig. 5. Conceptual illustration of SSD based on fusing the variation and
exemplar distance measures. S1 and S2 are two subspaces, which are 2-D
planes here. The variation distance is measured by principal angles between
the principal axes P1 and P2, which are aligned to obtain the canonical
vectors U = [u1, u2] and V = [v1, v2], respectively, through an orthogonal
transformation (see text for details). The exemplar distance is measured by
the angle θ0 between two exemplars e1 and e2.

Fig. 4 gives some clusters constructed for two of the
individuals in Fig. 1. We can observe that samples in a
single cluster exhibit only slight (mostly linear) variations in
appearance from their mean. Hereinafter, we call the sample
mean of each cluster “exemplar”, which can represent the
samples in the cluster to some extent.

The extracted clusters (i.e., X(i)’s) are then represented by
linear subspaces to obtain the final local models. Principal
component analysis (PCA) is employed for its simplicity and
efficiency. For each local model Ci , we denote its sample mean
(i.e., exemplar) by ei and corresponding principal component
matrix by Pi ∈ RD×di that is computed as the leading
eigenvectors of the covariance matrix and forms a set of
orthonormal basis of the subspace. Here di denotes the PCA
subspace dimension. Since the subspace (or local model) is
spanned by a set of samples, ei and Pi play different roles
to jointly describe the local model: the former characterizes
the data sample itself, and the latter characterizes the data
variation modes.

B. Local Model Distance Measure

With the local models constructed above, we can use SSD to
measure their distance. Intuitively, a reasonable and complete
SSD should take into account both the principal axes Pi and
the sample mean ei . As shown in Fig. 5, ei tells the position of
the subspace located in the global observation data space, and
Pi tells the spanning directions of the subspace. However, the
most commonly exploited SSD, i.e. principal angles, is only

associated with Pi and thus merely reflects the difference in
the variation modes. We call this distance as “variation based
measure”. On the contrary, several methods [4], [17] used only
ei to compute the local model distance. We call their distance
as “exemplar based measure”. Obviously, the two types of
distance measures respectively emphasize one side of the coin.
To incorporate the mean information when exploiting principal
angles for face recognition, [5], [14] have made a compromise
by performing PCA with the correlation matrix rather than
the covariance matrix. Nonetheless, this scheme makes their
resulting subspace basis a mixed version of mean and variance,
which does not have as pure and clear physical meaning as
ours. In the following, after a brief review of principal angles
and previous SSD definitions, we give a new formulation
of SSD, which is directly derived from principal angles,
and fuses seamlessly both the variation and exemplar based
measures.

1) Principal Angles: For two subspaces S1 and S2, denote
their corresponding exemplars by e1, e2, and orthonormal
bases by P1 ∈ RD×d1 , P2 ∈ RD×d2 , where d1 and d2 are the
subspace dimensions. Principal angles 0 ≤ θ1 ≤ θ2 ≤ · · · ≤
θr ≤ (π/2) between the two subspaces S1 and S2 are uniquely
defined as the minimal angles between any two vectors of the
subspaces [19]:

cos θk = max
uk∈S1

max
vk∈S2

uT
k vk

s.t. uT
k uk=vT

k vk=1; uT
k ui=vT

k vi =0 (i=1, 2, . . . , k − 1).

(9)

where r = min(d1, d2). Here in (9), uk and vk are called the
k-th pair of canonical vectors, the first constraint requires these
vectors to be normalized, and the second requires the canonical
vectors in each subspace to be orthogonal. Intuitively, the
first pair of canonical vectors corresponds to the most similar
modes of variation of two linear subspaces; every next pair to
the most similar modes orthogonal to all previous ones. The
smaller the maximum principal angle is, the closer the two
subspaces are.

To calculate the principal angles, a numerically stable algo-
rithm proposed in [18] is based on Singular Value Decomposi-
tion (SVD). In the method, the SVD of PT

1 P2 is first computed
as follows:

PT
1 P2 = Q1�QT

2 (10)

where � = diag(σ1, . . . , σr ), Q1 and Q2 are two orthogonal
matrices. The singular values σ1, . . . , σr are just the cosines of
the principal angles, i.e. the so-called canonical correlations:

cos θk = σk, k = 1, 2, . . . , r. (11)

The associated canonical vectors are U = P1Q1 =
[u1, . . . , ud1] and V = P2Q2 = [v1, . . . , vd2], which are
obtained by aligning the two principal axes P1 and P2
respectively through an orthogonal transformation, as shown
in Fig. 5. One may find that a previous work [29] has also
employed PCA based local models and then globally aligned
the local PCA subspaces. However, their alignment is for
single manifold dimensionality reduction, while ours is for
comparing a pair of local models from two manifolds.
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2) Previous Work on SSD: Based on principal angles,
various subspace distances have been defined in the literature.
For example, in the pioneering study named Mutual Subspace
Method (MSM) [14], only the smallest principal angle θ1 is
used to define a distance called Max Correlation as follows:

dMax(S1, S2) = (1− cos2 θ1)
1/2 = sin θ1. (12)

In contrast, another distance called Min Correlation is
similarly defined using the largest principal angle θr :

dMin(S1, S2) = (1− cos2 θr )
1/2 = sin θr . (13)

Both above distances depend highly on the probability dis-
tribution of the principal angles and are effective only in some
specific cases respectively, as noted in [15]. Consequently,
another distance called Projection metric, which uses all the
principal angles, was proposed as follows [20]:

dP(S1, S2) =
(

r
∑

k=1

sin2 θk

)1/2

=
(

r −
r

∑

k=1

cos2 θk

)1/2

. (14)

As advocated in [15], projection metric satisfies the met-
ric axioms and shows intermediate characteristics between
the above two distances. For other possible definitions
of SSD, please refer to [15], [20], [24] for detailed
overview.

3) Proposed SSD Definition: The projection metric in (14)
provides a reasonable variation distance measure between the
two subspaces S1 and S2. To derive a better SSD that takes
both sample means and variation modes into account, we need
to define an exemplar based measure and combine it with
projection metric. One possible choice might be the classical
PPD in (1). However, there seems no direct way to combine
the Euclidean distance in (1) with the projection metric in
(14) since they come in different forms. Hence, we resort to
the correlation measure that has been widely exploited in face
recognition [30]. As shown in Fig. 5, the correlation of the
two exemplars e1 and e2, is the cosine of their angle θ0. We
then define an exemplar distance measure:

dE (S1, S2) = (1− cos2 θ0)
1/2 = sin θ0,

where cos θ0 = eT
1 e2/||e1|| · ||e2||. (15)

With the two distance measures in (14) and (15), we can
fuse them in a seamless manner and reach the following formal
definition of SSD:

d(S1, S2) =
(

sin2 θ0 + 1

r

r
∑

k=1

sin2 θk

)1/2

=
(

2 − cos2 θ0 − 1

r

r
∑

k=1

cos2 θk

)1/2

. (16)

Because different subspace pairs do not necessarily have the
same number of principal angles, the factor 1/r in (16) mainly
serves as a normalized weight to balance the two measures.

When applying to comparing two image sets, the two
measures complement each other. Take the three manifolds
M1, M2 and Mp in Fig. 1 for example. After constructing
local models for each manifold, we compute the distances over

0.913 0.916 0.785 0.683 0.602 0.556 0.438 
(a)

0.998 0.987 0.983 0.966 0.951 0.891 0.849 
(b)

Fig. 6. Local model similarity. (a) Local model pair from different
individuals. (b) Local model pair from the same individual. In both (a) and
(b), the first column shows the exemplars of the two local models, and other
columns show the first six canonical vectors in turn. From their correlation
similarity shown below the images, we can see that every pair of canonical
vectors captures similar variation modes well. Furthermore, the similarities of
the same individual are clearly larger than those of different persons, which
shows expected discrimination.

these local models. In Fig. 6(a) and (b), we show respectively
the closest local model pair from M1 and Mp (from different
individuals), and that from M2 and Mp (from the same
individual).

The fusion of exemplar and variation distances in (16) dif-
fers from our initial formulation in the conference version [22],
where a simple weighted average combination was derived
from a somewhat ad hoc intuition. In this study, we have found
the improved definition in (16) is not only theoretically more
appealing but also experimentally more effective.

C. Global Integration of Local Distances

Now we come to the last component of MMD, i.e., to
choose the weights fi j in (6). While it seems a many-to-many
matching problem, our FRIS scenario has its special proper-
ties. To match the two sets as the same class, the most effective
solution would be to find the common views and measure their
similarity [3], [10], i.e., rather than matching each pair of local
models from two manifolds, those neighboring pairs deserve
more emphasis.

Following the notation in Section II-B, given two manifolds
M1 = {Ci : i = 1, 2, . . . , m}, M2 = {C ′j : j = 1, 2, . . . , n},
we first define two indicator functions as follows:

N(i) = arg min
j

d(Ci , C ′j ), j = 1, 2, . . . , n,

N ′( j) = arg min
i

d(Ci , C ′j ), i = 1, 2, . . . , m. (17)

Here, N(i) defined for M1 indicates the NN’s (nearest neigh-
bor) index of the local model Ci in M2. Similarly, N ′( j)
defined for M2 indicates the NN’s index of the local model
C ′j in M1. Then, we can obtain a set A containing all the NN
local model pairs:

A = A1 ∪ A2, where

A1 =
{

(Ci , C ′N(i))|mi=1

}

, A2 =
{

(CN ′( j ), C ′j )|nj=1

}

. (18)

Note that, although the NN relationship is asymmetric, A1 and
A2 may still contain some common elements, i.e., A1 ∩ A2 �=
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Fig. 7. Different global integration options. Both manifolds have three
local models. (a)–(c) Arrows going from each local model to its NN. For
example, the NN of C1 is C ′2, while the NN of C ′2 is C2 rather than C1.
(d) Arrows going from EMD suppliers to consumers. In all figures, the
widths of solid arrows indicate corresponding weights, while dashed arrows in
(c) have 0 weights. For example, weight 1 is placed on the only arrow in (a),
1/6 is on each solid arrow in (b) and (c), 1/12 and 1/4, are, respectively, on
thin and thick arrows in (d).

Ø. For notational simplicity, however, we treat these common
elements differently in set A. Thus, the cardinality of A is
always m + n. Based on such definitions, as shown in Fig. 7,
we investigate several approaches to globally integrating local
distances and make further comparisons between them.

1) Option-1: Min NN: To match the common parts of two
manifolds, a simple but intuitive method is to measure the
similarity between their best suited local models, as illustrated
in Fig. 7(a). It means to compute the minimum distance among
subspace pairs in set A. Formally, it is defined:

d1(M1,M2) = min
Ci∈M1

min
C ′j∈M2

d(Ci , C ′j )

= min
{

d(Ci , C ′N(i))|mi=1, d(CN ′( j ), C ′j )|nj=1

}

(19)

This option was exploited in our preliminary study [22] as
well as the related work [2], where impressive results have
been reported. However, as it only imposes weight 1 on the
closest pair of local models, the integration result could be
unstable and easily affected by outliers in the presence of
noise.

2) Option-2: Mean NN: To incorporate more information
from multiple NN pairs, it is easy to reach another integration
way that simply computes the mean distance of all subspace
pairs in A:

d2(M1,M2) = 1

m + n

( m
∑

i=1

d
(

Ci , C ′N(i)

)

+
n

∑

j=1

d
(

CN ′( j ), C ′j
))

. (20)

While the equal weight setting is quite straightforward,
this option does not take account of global data distribution.

More specifically, as shown in Fig. 7(b), it is unreasonable to
treat all NN pairs of local models equally for large variations.

3) Option-3: Mean NN’s NN (N4): A more general intuition
is that the smaller the distance of the pair is, the larger its
weight should be. This motivates our third option to transfer
some weights from the further pairs to those closer ones.
Fig. 7(c) demonstrates the idea.

Specifically, for each Ci (i = 1, 2, . . . , m) in M1, we find
its NN C ′N(i) in M2. Then for C ′N(i) , we find inversely its
NN CN ′(N(i)) in M1. Here, we call CN ′(N(i)) as the NN’s
NN (N4) of Ci . By replacing the term (Ci , C ′N(i)) in (20)
with (CN ′(N(i)), C ′N(i)), we then transfer the weight of the
former pair to the latter one. In the same manner, for each
C ′j ( j = 1, 2, . . . , n) in M2, we can find its NN CN ′( j ) and
N4 C ′N(N ′ ( j )) respectively. Then the term (CN ′( j ), C ′j ) in (20)
is replaced with (CN ′( j ), C ′N(N ′ ( j ))). Finally, we derive a more
reasonable definition of MMD in the following:

d3(M1,M2) = 1

m + n

( m∑

i=1

d
(

CN ′(N(i)), C ′N(i)

)

+
n

∑

j=1

d
(

CN ′( j ), C ′N(N ′ ( j ))

)
)

. (21)

For more intuitive illustration, let us see the two manifolds
in Fig. 7(c). For the local model C1 (i.e., i = 1), its NN and N4

are C ′N(1) = C ′2 and CN ′(N(1)) = C2 respectively. Therefore,
the weight of the further pair (C1, C ′2) (red dashed arrow in
the figure) will be transferred to the closer pair (C2, C ′2) (red
solid arrow). Likewise, for the local model C ′1 (i.e., j = 1), the
weight of (C2, C ′1) (blue dashed arrow) will also be transferred
to (C2, C ′2) (blue solid arrow).

We can see that option-3 combines the merits of option-1
and 2. Compared with option-1, it can guarantee more stable
results by using information from more data. Compared with
option-2, it can adaptively adjust the weights on different NN
pairs in accordance with the real data characteristics more
reliably.

4) Option-4: Earth Mover’s Distance (EMD): Our fourth
option exploits Earth Mover’s Distance (EMD) [31], which
shows promising performance in many applications. In this
option, we apply EMD to compute the weights fi j in
(6). Two manifolds M1 and M2 are represented as two
signatures: M1 = {(C1, wC1), . . . , (Cm , wCm )}, M2 =
{(C ′1, wC ′1), . . . , (C

′
n, wC ′n )}, where wCi and wC ′j are the

weights of the clusters Ci and C ′j . The weights wCi /wC ′j are
used as the total supply of suppliers (i.e. M1) and the total
capacity of consumers (i.e. M2) in EMD, with the default
normalized value of 1/m and 1/n respectively. The EMD
between M1 and M2 is computed by

d4(M1,M2)=
∑m

i=1

∑n

j=1
f̂i j di j

/∑m

i=1

∑n

j=1
f̂i j , (22)

where the SSD di j = d(Ci , C ′j ) is called ground distance,

f̂i j is the optimal flow that can be determined by solving the
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following Linear Programming problem [31]:

f̂i j = arg min
fi j

∑m

i=1

∑n

j=1
fi j di j

s.t.
∑n

j=1
fi j ≤wCi , 1≤ i≤m;

∑m

i=1
fi j ≤wC ′j , 1≤ j≤n;

fi j ≥ 0;
∑m

i=1

∑n

j=1
fi j = min

(∑m

i=1
wCi ,

∑n

j=1
wC ′j

)

.

(23)

In (23), the first two constraints limit the amount of supplies
that can be sent by the clusters in M1 to their weights, and the
clusters in M2 to receive no more supplies than their weights;
the third constraint allows moving “supplies” from M1 to M2,
not vice versa; the last constraint forces to move the maximum
amount of supplies possible, named the total flow [31].

f̂i j can be interpreted as the optimal match among
local models from the two manifolds. Due to the “supply-
consumption balance” constraint in (23), the EMD match will
inevitably place some weights on those non-NN local model
pairs, as shown in Fig. 7(d). The same problem also applies
to other possible EMD weights, e.g., unit weights.

5) Comparisons of the Four Options: From above intro-
duction, option-1 and option-3 conform to our intuition to
impose more emphasis on those closer NN pairs. It is also
interesting to note that under these two options, the MMD in
(6) is consistent with the definition of SMD in (5) when a
manifold has only one local model, i.e., m = 1 or n = 1.

As for computational cost, option-4 is the most expensive.
Suppose the numbers of local models in two manifolds are the
same, i.e., m = n, then its complexity is O(m3 log(m)) [31].
In contrast, the other three options are all of O(m2).

Besides option-1 to 4, other choices may also be explored.
For example, if an option takes the form of “Max NN”,
then it readily reduces to the well-known Hausdorff distance
[32]. However, for the FRIS task, the above four options are
believed to be the most appropriate ones.

IV. DISCUSSION

A. Comparisons With Related Work

From the view of set matching problem, MMD bears
some resemblance to two representative methods, MSM
[14] and “LLE + K-means” [17]. For set modeling, MSM
represents an image set with a linear subspace, while “LLE +
K-means” models it as a nonlinear manifold. However, the
latter expresses the manifold with some pre-specified number
of local models. On the contrary, MMD is able to extract
multi-scale local models from the manifold adaptively and the
number of local models for each manifold can be estimated
using a measurable nonlinearity score in real-time for testing
data. In the aspect of SSD measure, MSM and “LLE +
K-means” respectively exploit the variation and exemplar
based measures, while MMD reasonably fuses the two
measures. In brief, MMD effectively combines the merits of
the two methods and provides a general set similarity measure.

To address another different problem of measuring invari-
ant image similarity, several methods were proposed in the
literature, e.g., Joint Manifold Distance (JMD) [33] as well
as related work [34], Multiresolution Manifold Distance

(MRMD) [35], and Manifold Distance using the difference
of convex functions (MDDC) [36]. Though their titles seem
similar to MMD, their intrinsic properties are quite different
from ours mainly in the following two aspects:

1) These methods mainly serve as distance measures
between images to achieve invariance to parameterized
image transformations, following the earlier work of
tangent distance (TD) [37]. Whereas, MMD aims to
measure the similarity between two sets of images from
the nonparametric viewpoint.

2) The notion of “manifold distance” in these methods
means the distance from a reference point to the transfor-
mation manifold [36], and it is actually defined between
points in linear subspaces. On the contrary, MMD
formulates the distance of data variations on general
manifolds.

B. Complexity Analysis

The computational complexity of MMD is basically domi-
nated by the following four parts.

(1) Constructing local models (i.e., MLPs) based on
L-HDC. To compute the three N ×N matrices DE , DG and R
in advance, using Dijkstra’s algorithm with Fibonacci heaps,
the complexity is O(N2 log N) [28], where N is the number
of samples in the image set. Then the complexity of Algo.1
mainly relies on step 2.4 to compute the score β

(i)
l and β

(i)
r

according to Eq.(8). For simplicity, we assume the two child
clusters X(i)

l and X(i)
r are of equal size. Then to obtain the

complete clustering hierarchy, the complexity of Algo.1 is

O

(
∑�log N�

p=1
(2p(N

/

2p)2)

)

≈ O(N2).

(2) Computing PCA subspaces for local models. For each
local model Ci (i = 1, 2, . . . , m), its data matrix is of size
D × Ni . Assume the local models are of equal size, then
Ni ≈ N/m. The PCA computation mainly involves eigen-
value decomposition of the D×D covariance matrix. Since it
is often the case that D > N > Ni , the eigen-decomposition
can be conducted on an Ni × Ni matrix plus some low
complexity matrix multiplications. Thus the complexity of this
part is about O((N/m)3 ·m).

(3) Computing local model distances (i.e., SSD) based on
principal angles. Suppose the numbers of local models in two
manifolds are the same, then we need m×m times of principal
angles computation. With the SVD algorithm in Eq. (10), the
total complexity is thus O(d3 · m2), where d is the PCA
subspace dimension of the local model.

(4) Integrating the local distances. As discussed in
Section III-C-5, adopting our option-3, the complexity is
O(m2).

To sum up, the total complexity of MMD is the sum of the
above four parts and can be roughly approximated by O(N3).

V. EXPERIMENTAL RESULTS

The proposed method is evaluated in the FRIS task, where
both gallery and probe image sets are modeled as manifolds,
and identification is achieved by seeking the minimum MMD.
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(a)

(b)

(c)

Fig. 8. Examples of three face databases. Each row contains representative
facial images from one video clip. (a) Honda/UCSD. (b) CMU MoBo.
(c) YouTube Celebrities, where each of the three rows comes from a different
session, and the original video frames with automatic face detection are shown.

A. Databases Description and Settings

We consider three datasets with different characteristics,
including two benchmark datasets: Honda/UCSD [8], CMU
MoBo [38], and one much challenging dataset: YouTube
Celebrities [7], to ensure extensive evaluations of different
methods. The Honda/UCSD consists of 59 video sequences
involving 20 persons. Each video contains about 400 frames
covering large variations in head movement as well as in facial
expression. The CMU MoBo contains 96 sequences of 24
subjects. Each subject has 4 sequences captured in different
walking situations: holding a ball, fast walking, slow walking,
and walking on incline. Each sequence has about 300 frames.
The YouTube dataset contains 1,910 video clips of 47 subjects
collected from YouTube. Each person has on average a total
of 41 clips, which are divided into 3 sessions taken at different
times and scenes. Each clip contains hundreds of frames,
which are mostly low resolution and highly compressed. For
all three databases, we used a cascaded face detector [39]
to collect faces in each video. Faces in Honda/UCSD were
resized to 20 × 20 gray images, and those in CMU MoBo
and YouTube were resized to 30×30. Histogram equalization
was employed to eliminate lighting effects. Some examples
are shown in Fig. 8.

On all datasets, we conducted ten-fold cross validations,
i.e., 10 randomly selected training and testing combinations
of the video clips, for reporting identification rates. For both
Honda and MoBo, each person had one clip for training and
the rest for testing. For YouTube, in each of the ten-fold
cross validations, one person had a total of nine randomly
chosen clips from his/her three sessions (i.e., three clips from
each session) for experiment, where three clips were used for
training and six for testing. For a relatively easy setting, one
of the three clips from each session was for training and the
rest two for testing.

B. Comparative Methods and Parameter Settings

We compared the performance of the following methods:
1) Nearest Neighbor matching in LLE + K-means cluster-

ing [17], which is a typical exemplar-based method,
2) Mutual Subspace Method (MSM) [14], which is a typ-

ical variation-based method,
3) Kernel Principal Angles (KPA) [16]1 and Kernel Grass-

mannian distances (KGD) [12], which are two represen-
tative nonlinear extensions of principal angles,

4) Constrained MSM (CMSM) [5] and Discriminant
Canonical Correlations (DCC) [3]2, which are two rep-
resentative discriminant methods over sets,

5) The proposed MMD method.
In our experiments, to compare different methods, their

important parameters were tuned empirically within a wide
range. In LLE + K-means, we used the same parameter setting
as [17]. For each training video sequence, k = 5 exemplars
were extracted, and the identity of the probe image set was
determined using majority voting scheme. In KPA, a sixth
order monomial expansion kernel and the first 20 principal
angles were used as [16]. In KGD, we exploited the Chordal
distance (i.e. the projection metric in (14)) and chose Gaussian
function with bandwidth σ = 2 as [12] to compute the kernel
subspace.

For MSM/CMSM/DCC, we followed the evaluation settings
similar to [3]. PCA was first performed to learn the linear
subspace of each image set, and the subspace dimension was
around 15 by preserving 95% energy. Then, the dimensions of
discriminative subspaces in CMSM and DCC were determined
optimally in terms of identification rate for each database.
Finally, to measure the set similarity, both CMSM and DCC
exploited all canonical correlations. For MSM, we reported
its best possible results by tuning the number of canonical
correlations. For the DCC learning on Honda and MoBo, the
single training image set from each class was randomly divided
into two subsets to construct the within-class sets as in [3].

For MMD, we adopted the formulation in (21), i.e., option-
3 (Mean N4) for the global integration. First, we need to set
the number of local models for each manifold, i.e. m, n. Its
appropriate value can be determined from the nonlinearity
score curve, as shown in Fig. 9. For instance, we can set
it to a value whose first-order derivative approximates zero.
Typical empirical value for one set with 300 ∼ 400 images
is 5 ∼ 8. Second, for representing the local model Ci , we set
the PCA dimension di by preserving 95% variance, which was
around 5. Finally, the formal SSD in (16) was used with all
principal angles.

C. Comparison Results and Analysis

Table I summarizes all the comparison results. Each
reported rate is an average over the ten runs of cross validation.
We next highlight some observations on the results.

First, the proposed MMD consistently outperforms the two
baseline non-discriminative methods, i.e., LLE + K-means

1We used the original authors’ implementation.
2For MSM/CMSM/DCC, we used the implementations all shared by the

authors of DCC [3].
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TABLE I

EVALUATION RESULTS OBTAINED BY TEN-FOLD CROSS VALIDATION ON DIFFERENT DATA SETS

Dataset
Mean and standard deviation of recognition rates of different methods

LLE + K-means MSM KPA KGD CMSM DCC MMD

Honda/UCSD 0.894 ± 0.03 0.925 ± 0.04 0.953 ± 0.04 0.944 ± 0.04 0.975 ± 0.02 0.980 ± 0.01 0.971 ± 0.02

CMU MoBo 0.879 ± 0.04 0.899 ± 0.03 0.905 ± 0.04 0.912 ± 0.05 0.924 ± 0.04 0.919 ± 0.05 0.935 ± 0.02

YouTube 0.592 ± 0.06 0.608 ± 0.04 0.633 ± 0.05 0.620 ± 0.05 0.647 ± 0.03 0.673 ± 0.03 0.652 ± 0.03
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Fig. 9. Average nonlinearity score curves, each of which corresponds to an
example image set from the three face databases.

and MSM, by a large margin. As discussed in Section IV-A,
MMD reasonably integrates the preferable features of them.
Among the three methods, LLE + K-means gives the lowest
recognition rates though it exploits manifold to extract training
exemplars. This is mainly because its testing scheme is some-
what simple by classifying samples in each testing image set
separately and this method can not fully model the variability
of the image set [4].

Second, by using principal angles and modeling data non-
linearity implicitly via kernel trick, the two methods KPA
and KGD deliver similar performance, as reported in [12],
and have improved MSM with an accuracy increase of about
3%. However, they are still inferior to our MMD that uses a
collection of local linear subspaces to explicitly characterize
the nonlinear manifold. Kernel based methods generally have
the difficulty to select appropriate kernel functions and tune
the parameters. This is reflected partially from their relatively
higher standard deviations on all the databases. In addition,
their prohibitive computational burden also makes them less
appealing, as will be demonstrated in the next section.

Third, compared with the two discriminant methods, CMSM
and DCC, our non-discriminative MMD yields comparable
result, which demonstrates the potential of MMD as a general
distance for various applications. The superiority of DCC and
CMSM is not surprising since they have effectively exploited
the discriminative information from training data while all
other methods do not involve the training phase. Note that
in CMU MoBo, MMD even delivers the highest recognition
rate impressively. We attribute this to our better manifold
modeling method, and more importantly the SSD definition by
fusing the variation and exemplar based measures in a more
principled manner, which will also be further confirmed in the
next section.

D. Evaluations of the Different Ingredients of MMD

We conducted further experiments to investigate the three
ingredients of MMD discussed in Section III. We also per-
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Fig. 10. Comparison of different clustering methods.

formed an experimental study to address a practical problem
of noisy set data. In the last, we experimentally compared
the computational cost of our MMD with other recognition
approaches. The two challenging datasets MoBo and YouTube
were used for these evaluations.

1) Local Linear Model Construction: We compared our
L-HDC with three alternative clustering methods exploited in
previous literatures: HAC [4], K-means [17] and mixtures of
probabilistic PCA (MPPCA) [2]. In [4], the distance between
two clusters was measured by geodesic distance and we call
it G-HAC. In K-means, Euclidean distance was used. In
MPPCA, as the setting of [2], dimensionality reduction (from
900D to 150D) using PCA was performed to the original
image data before the estimation of MPPCA model.

In our experiment, L-HDC was first conducted on each
image set to obtain the complete clustering hierarchy. The
MMD between two image sets was then computed by using
their respective clustering level associated with the same
nonlinearity score. Fig. 10 shows the comparison results under
varying scores. As shown in Fig. 9, the number of clusters
gives an intuitive reflection of the nonlinearity score, and
different image sets may produce different numbers of clusters
under the same score. Hence, the average number of local
models for L-HDC in Fig. 10 is not necessarily integer value.
In our testing, the average number of clusters (i.e. local
models) in the last clustering level for MoBo/YouTube is
50.66/36.40 respectively, shown as the last but one point in the
L-HDC curve. Moreover, we tested an extreme case by treating
each single image sample as one local model and performing
the “min NN” matching for recognition. In fact, this is exactly
the method of [10], which we call Single Sample Matching
(SSM) in the following. In this case, the average number is
255.87/153.11 for MoBo/YouTube respectively, shown as the
last point in the L-HDC curve. For comparison, the other three
clustering methods were also performed on each image set
to obtain multi-level clusters, which were then similarly used
to compute MMD under different clustering levels as done in
L-HDC. However, unlike L-HDC, these three methods utilized
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TABLE II

COMPUTATION TIME (SECONDS) OF DIFFERENT CLUSTERING METHODS

Algorithm
Number of local linear models

2 6 10 14 18

L-HDC 0.142 0.180 0.196 0.212 0.236

G-HAC 59.552 59.451 59.319 59.252 59.169

K-means 0.765 2.893 3.396 3.927 4.487

MPPCA 1.237 3.219 5.280 7.742 10.155

the same number of clusters for all image sets in each level
of MMD computation.

From Fig. 10, we observe that with increased number of
local models, all of the four methods enjoy large performance
gains, indicating the contribution of our local models represen-
tation of the image set manifold. As the number of local mod-
els exceeds some point (usually less than 10), the accuracy cor-
respondingly has only marginal changes with added local mod-
els. It is also interesting to find that in the extreme case, SSM
can yield very close performance to the best of MMD, how-
ever, at much higher computational cost. As also discussed in
Section I-A, this method is much more sensitive to the effect of
outliers. These will be experimented in the following section.

While comparing the recognition accuracy by using the
four clustering methods, it can be seen that L-HDC and
G-HAC, both exploiting geodesic distance, similarly deliver
superior performances to K-means, which further confirms the
nonlinear manifold structure of the image sets. Combining
with more sophisticated techniques, MPPCA also outper-
forms K-means and gives similar accuracy to the other two.
In addition, the gain of L-HDC over G-HAC is mainly
attributed to two factors. One is its explicit linearity guarantee
of the clusters, and the other is its adaptive selection of the
number of clusters, rather than a universal setting for different
image sets in G-HAC.

Besides the accuracy, the computation time of the four
methods is also compared, as shown in Table II. The results
were obtained by averaging the time of 20 runs of each
algorithm on 20 image sets, each with 300 images. Note
that, the time for L-HDC has included the computation of
the distance matrices DE and DG . From Table II, L-HDC is
shown to be the most efficient with a significant margin over
G-HAC. Also, we observe that with the same increase of clus-
ter number, the time increment for L-HDC/G-HAC is much
less than that of K-means. This is because both L-HDC and
G-HAC need to compute point-pair distances (the most expen-
sive part) only once and their iterative steps mainly involve
simple splitting or merging operations, while K-means needs
to compute point-pair distances again in each new iteration.
Furthermore, compared with K-means, MPPCA still seems
more time demanding, though a PCA preprocessing has been
conducted for significant reduction in computation as [2], mak-
ing it less appealing in efficiency compared with our method.

2) Local Model Distance Measure: In this experiment,
we compared the single exemplar-based SSD in (15) and
variation-based SSD in (14) with our formal SSD in (16),
referred to as “Exe.”, “Var.” and “Exe. + Var.”, respectively.
We also compared “Exe.” with the exemplar distance defined
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Fig. 11. Comparison of different SSD measures.

in (1), referred to as “Exe.-ED”. The comparison results are
plotted in Fig. 11. From the figure, we have the following
observations.

(1) There is no single distance that is universally optimal for
all databases. In MoBo, “Exe.” outperforms “Var.” noticeably
by more than 5%. One possible reason is that two sequences
from different persons but with the same walking situation
could have high correlation, making their variation-based SSD
relatively small. On the contrary, “Var.” yields slightly better
result than “Exe.” in YouTube. This can be also due to the
database itself. See the examples in Fig. 8(c), for different
clips of one person captured at different times and scenes, their
appearance is likely to undergo considerably large changes,
whereas their common variation modes (e.g., the person strikes
a certain pose or expression) can remain relatively stable
across different scenarios. In this case, the variation-based SSD
is more reliable than the exemplar-based SSD.

(2) The formal SSD “Exe.+ Var.” generally outperforms the
individual distances, especially in YouTube, demonstrating that
combining the two single distances in a principled way is the
best solution in practice. This also validates the rationality and
effectiveness of the weighting scheme in (16) by imposing the
factor 1/r to balance the two distance measures. Furthermore,
the two exemplar distances, “Exe.” and “Exe.-ED” deliver
similar performances on both testing databases. This shows
the feasibility of using the correlation-based distance in (15)
as an alternative to the PPD in (1) for deriving our formal SSD.

3) Global Integration of Local Distances: We first verified
the property of the four integration options when combined
with different SSD measures. As mentioned in Section III-
C-4, the EMD option has two types of weight settings, i.e.,
the normalized and unit weights, denoted as “EMD-Norm.”
and “EMD-Unit” respectively. The number of local models
in MMD was fixed at 7.54 and 6.84 for MoBo and YouTube
respectively (corresponding to the rightmost setting in Fig. 11).
From the result in Fig. 12, it can be seen the four options
demonstrate consistent contrast across different SSD measures.
By emphasizing those closer NN local model pairs, option-1
(Min NN) and option-3 (Mean N4) generally exhibit simi-
lar characteristics and outperform option-2 (Mean NN) and
option-4 (EMD). In contrast, option-4 with either normalized
or unit weights treats all local models in each manifold equally
and delivers the worst performance. These observations all
conform to the theoretical analyses in Section III-C.

We further evaluated the resistance of different options to a
common problem in set-based recognition, i.e., unbalanced set
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Fig. 13. Effect of unbalanced set size on MMD global integration options.

size, which will inevitably cause those bigger gallery sets to
yield closer similarity to a probe set. We simulated the problem
by down-sampling the gallery image sets while keeping the
probe sets with the original size. Since our image sets are all
from videos, one possible way is to remove some sub-clips
with consecutive images from the original video. Specifically,
each gallery set was first divided into 10 sub-clips of equal
length. Then a reduced-size version of the set was produced
by randomly removing certain number of the sub-clips. We
have tested four versions by keeping 90%, 70%, 50% and
30% samples in the reduced gallery set. For set matching, we
also implemented a scheme to simulate the practical scenario:
once a comparison between a probe set and a gallery set is to
be conducted, if they belong to the same class then we take the
reduced gallery version to compute their similarity; otherwise
we take the original size gallery set.

In general, with the set size decreasing, the number of
resulted local models also drops accordingly. From the com-
parative results in Fig. 13, one can find that the four options,
except for “EMD-Unit”, all consistently have their perfor-
mance deteriorated with the degenerated gallery sets. The
superiority of option-3 is further validated from the contrast.
Especially in the hardest case (30%), option-1 becomes obvi-
ously inferior to option-3. It is also reasonable to see the
accuracy raise of “EMD-Unit”, since the unbalanced number
of local models between the gallery and probe image sets make
this option focus on matching the closest part of the two sets
favorably.

4) Problem of Noisy Set Data: Another common challenge
in real-world application is that the image sets contain noisy
data (i.e., images outside the category), as noted in [40]. In this
section, we experimentally studied this problem and compared
MMD with other three principal angles-based methods (MSM,
CMSM and DCC) as well as the Single Sample Matching
(SSM) method. We used the similar setting in [40] and
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Fig. 14. Effect of noisy set data on different recognition methods.

conducted three experiments in which the gallery and/or the
probe sets were systematically corrupted by adding one image
from each of the other classes. The three cases are referred
to as “N_G” (only gallery has noise), “N_P” (only probe has
noise), and “N_G+P” (both).

From the result in Fig. 14, it is observed that along
with other principal angles-based methods, our MMD shows
relatively slight performance drops and is much more robust
than SSM against the noisy data. This can be mainly attributed
to the subspace based modeling and matching since it is a
statistic of samples and the noisy set samples are largely
filtered out with an average filter during subspace computation.
In contrast, based on matching the closest sample, SSM relies
highly on the location of each individual sample and can be
heavily deteriorated by outliers, as mentioned in Section I-A.

5) Computational Cost Evaluation: Since time efficiency
is an important concern for set classification tasks, here we
make an experimental comparison of the computational cost of
different recognition methods. LLE + K-means was excluded
from this experiment for its rather different classification
scheme from the others. Two image sets from the MoBo
database, each with about 300 images, were selected to
report the result on a Pentium IV, 2.8 GHz PC with 2 GB
of RAM.

For MMD, as discussed in Section IV-B, its complexity
is dominated by four parts, where the first two parts are
mainly for set modeling and the last two for set matching.
By modeling the image set with a typical number of 6
local subspaces, the time cost for each part is tabulated in
Table III. One can see that the first part to construct MLPs is
the most expensive, which mainly involves the computation
of geodesic distances. For MSM/CMSM/DCC, they share
the same set modeling by computing a single PCA for the
image set, while the matching phase of MSM obviates the
discriminant projection in CMSM/DCC. For SSM/KPA/KGD,
they all directly conduct set matching without explicit set
modeling. The heavy computational burden makes them less
appealing. While the efficiency of SSM seems insignificantly
inferior to MMD in terms of total time cost, it is worth noting
that in real applications, their efficiency difference will mainly
rely on the matching phase where MMD is about 43 times
faster than SSM. This is because the set models only need to
be constructed once but can be used repeatedly, e.g., in need
of comparing a probe set with multiple gallery sets in FRIS.
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TABLE III

COMPARISON OF COMPUTATION TIME (SECONDS) FOR DIFFERENT SET

CLASSIFICATION METHODS

Algorithm
Modeling Matching

Total
MLP PCA SSD Integ.*

MMD 0.1795 0.1109 0.0283 0.0001 0.3188

SSM N/A 1.2244 0.0012 1.2256

MSM 0.3127 0.0006 0.3133

CMSM/DCC 0.3127 0.0071 0.3198

KPA N/A 8.4467 8.4467

KGD N/A 7.7307 7.7307

*Integration.

VI. CONCLUSION

Recognizing sets of images undergoing large variations is
a challenging problem. By representing each image set as a
manifold, the problem is formulated as measuring the distance
between manifolds. We propose a general framework of Mani-
fold to Manifold Distance (MMD), and present several techni-
cal contributions for its computation. Extensive experiments on
Face Recognition with Image Sets (FRIS) demonstrate that the
proposed method consistently outperforms other competing
methods, and is also promisingly comparable to the state-of-
the-art discriminant methods over sets.

Currently the MMD is exploited mainly as a general set
similarity measure. In the future, we intend to incorporate the
video temporal dynamic features. Another interesting direction
could be to explore the most useful information involved in
principal angles, like the learning approach in CMSM/DCC,
and measure the local model distance in more sophisticated
manner. In addition, it is also beneficial to extend the work
in order to accommodate the cases of data with critical
sparsity, which would deteriorate the manifold assumption and
representation in the method.
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